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SURFACE 

The problem of the rolling of a rigid body with a finite surface, on another fixed surface, 
has been investigated by many authors. We should first note the investigationa [l-7], 
which contain almost all the basic rem&s obtainedon this problem up to the present time. 
This paper, using the methodof Woronetz, considers the caseof the rolling of a body of 
revolution’ on the surfaceof revolution and points out some new cases of integration. 

1. Consider systems of rectangular coordinate axes 0x,x,x, and Oiz$.# (iI, i,, i,; 

and ii, ii, ii are the respectiveunit vectors), rigidly connected to the rigid body and the 

base surface respectively (all coordinate systems in the paper are left-handed). Thin en- 

ables the position of the body with the coordinates &, s&, s&, of point 0 in the system 

O1x$v~z$ and Euler angles r$, I), 8 (p ure rotation, precession and nutation) between the 

above axes to be determined. The components of velocity vector V, of point 0 and the body 

angular velocity vector 0 on axes Ox 2 x r e e are denoted by k, I, m and p, q, r. 

Further, considering for thepoints of surface S, bounding the rigid body, a radius-vector 

p starting from point 0 and Gauss coordinate6 q’, q’, gfvev its equation in the form 

Q = Q (q’, !7? (Q = xrir + Go + x&J (1.11 

and the coefficients of the first two quadratic forma will be denoted by all, am, bri, b,, 

(for simplicity, we assume that the coordinate lines of the ourface are lines of curvature). 

To the point of contact M ou surface S we shall attach a moving datum Mq’q*n with unit 

vectors, directed along the tangent to the coordinatea and the normal, 

el = kl el, e3 = er = & (Qr x QP) (Q. = $ Q) (1.2) 

i A body of revolution is understood here to mean a rigid body, bounded by the surface 
of revolution, the axisof which passes through the center of inertia andis also the dynamio 
axis of l ymmatry of the body. 
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and shall denote the components of vector p on these axes as 

We shall also introduce the nine cosines of the angles between sxes Or,r,s, and 

Myty*n using the expression 

i,i = I,,.P, ) t I,,;(*, f I,,& (k = 1, 2, 3) 

The above comments for surface S, bounding the rigid body, are also valid for the base 

surface S ’ (corresponding variables are denoted by the same letters, but indexed). Further, 

following Woronetz, we shall determine the position of the body using the generalized co- 

ordinates yt, yr, (I:, 9;, 0 (the first four are the Gauss coordinates of point M, and 6 is 

the angle between the axes 9r and 9,’ at the same point). 

The projections of the body angular velocity ,o on the moving datum axes Mq’y*n are 

given by the expressions r (here and below, the upper andlower signs correspond to the 

case e3 = e.: and e3- -e,a respectively): 

(J =z - 9;’ cos 6 

(1.41 

n= 

In this problem we have the relations 

and equations (1.41, using the above, can be written as 

(J = - AI2 1/G ‘II’ - cz2 1/(1,, y2., T = A,, I/a,, 9r’ -;> “I I/& 9%’ 

n = - 6’ -F ‘4, v/a,, q” ---A21/~ltz y” 

r The first terms in these expressions are the projectionsof the angular velocity of axes 
Os,r,x, relative to Mqly2n on the same axes &f919%, they are denoted below by or, rr 

andn,. 
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The equations of motion of a rigid body, of finite surface, moving on another fixed our- 

face, when point 0 is the center of inertia, are 

(1.6) 

(a= i,2) 

It- I/&l (A .,sin 6 + _A,, cos 6) $- -+ 1 * (n,, cos 6 --Oal sin 6) -$ 

au (1.7) 
P,=-- 

Here @ is the kinetic energy, derived using (1.5), II is the forcing function and R = 
2 

= n11n22 - A,*. 

Assuming that the axes Ox,xxx, are the principal central inertia axes and denoting by 

A. B, C the principal central moments of inertia, we get 

28 = Mp2 (UZ + T2 + n2) - M (Eu + rjz + En)* + 

+ A (cl,, + ~12, + d,J2 + B (~42 + ~12, + 42Y + C @I,, + ~12, + n&J2 (1*a) 

Also, the cosiness of the angles of the axis Ox, with axes 0,x:, 0,x:, and Orxi are 

(the corresponding cosiness for axes Ox, and Ox, are obtained by changing 1,,, 1x1, I,. 

to 42, lxx, 1,~ and II,, /x3, 1,x) (1.9) 

I,, (j, CjJ + 1x1 (f I:k cos 6 + lib sin 6) + III (f 1 ik sin 8 + lib ~0s 6) (k = 1, 2, 3) 

The expressionsof the coordinatesof the center of inertia in the system O,X~X:X~ are 

xi, = xi - [(f lir sin 13 + I.& cos 6) 6 + 

-/- (T lik cos 6 -I- l,& sin 9) q -I- (f &J &I (k = 1, 2, 3) 
(1.10) 

2. We shall now consider some problems of the rolling of a body of revolution bounded 

by the surface of revolution 

XI = u cos v, x2 = u sin v, =3 = f (4 

on another surface of revolution 

xi = ur cos y, xi = u1 sin vr, xi = 1’ (4 

in which the forcing function is of the form U (u, 6, ur). Such a case occurs if the body im 

under the action of gravity and the axis O1xi is vertical, and also if the body is acted on by 

forces, the resultant of which is directed from the center of inertia to the point 0, of the 

axis of symmetry of the base, and depends only on the distance between these points. 

We shall first consider the problem for a body bounded by a sphere. The equation of the 
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sphere, in the ayetem OzIqx, has the form (I is the coordinate of the geometric center 

relative to axis Or,) 

xl = R sin u cos (*, zS = R sill u sin v, xa - 1 = R c.os II (2.1) 

Using these equations we get 

UI1 = R’, oOL = Ra sing u, b,, = - R, b,, = - R sin” u 

I,, = - sin u, I,, = 0, I,, = cos u, p2 = Hz + 21R cos u + 12 (2.2) 

E = - 1 sin u, q = 0, E=R+ lcosu (2.3) 

With equation6 (2.2) and (2.3), the expreamion for the kinetic energy can be written as 

28= (A+M(R~+l*+2RZcosu)]zS+ [M(R+ lcosu)2+Csin2u+ 

+ A COS* U] 19 + 2 [(A - C) cos u + Ml (R + 1 cos u)] sin uun -i- 

+ [C co8 u +( A + MP) sin2 ul n2 
(2.4) 

We ehall now derive the eqaatione of motion (1.6) of the body of revolution, bounded by 

a sphere, on any fixed surface.’ 

1 g i- (‘c i- u’) g - (n -k v’ cos u) g - MlR sin2 UTV’ = P, 

-$g+(n+ J cus u) g - (a - v-sin u) 2 $ MlR sin UTU’ = P, 

$g+(u- 

(2.5) 
u* sin u) 2 - (T + u’) ‘z + M (R + 1 cos u) (Ru’u + R sin ul;‘t) + 

+ MIR sin unu’ = P, 

We shall l eanme that the baee eorface is also a sphere, the equations of which in the 

system 01+# are 

4 = R, sin t+ cos vIr xi = R, sin u1 sin vIr z; = R, cos u1 (2.6) 

and for which, haeed on the above calculations (2.2). we have the analogous expressions 

a;, = Rf, a$ = R,¶ sina uIr bl =-_R 
11 19 b’ = - R, sin2 u 

22 

1' = - sin u 
’ (2.7) 

13 19 I’ =o 
23 ' 

I’ = cos u 
33 1 

If, in the rollfng body, the ~44~4~4 (convex) side of the bounding sphere is in contact 

with the conv4x (concave) side of the haae - sphere, we have e3 = e,$ (this case is presented 

bslow); howover, if the anrfacea arein contact on their concave sides we have e3 = - 4. 

The eqnatione of relations (1.5) ti this problem are 

RIu,’ = Ru' sin 6 - R sin uv’cos 6, R, sin ulvlm = RU’COS 6 + R sin uJsin 6 

The projectioneof ths body angnlar velocity on the axes of the moving datum (1.4) be- 

come here 

’ If in the rolling body there ia a rotor turning about axis Ox, with conetant velocity 
o’, the cantor of inertia of which coincides with the center of inertia of the body, then rhe 
following terms are added to tha right oidea of equations (1.6) (il. A. E. C are the maas and 
moments of inertia of the whole system, C’is the momsnt of inertia of the rotor aboot axis 
Ox, and Oz,, x = C’O’): 

x (G3 - %A x (01, - 7%). x (71,, - a&) 
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R--RR,. 
u = - __ sin UP, 

RI 
z = R-_ u’, 

RI 
n = - cos uv’ + cos +v; - 6’ (2.9) 

Finally, the forcing functionof gravity (to be specific, we shall take axis 0,x: vetti- 

tally downwards), according to (1.101, (2.3) and (2.7). is here 

r/ = Mg [(R, - R - 1 cos u) cos u1 - 1 sin u sin ut sin i?] (2.10) 

and the forcing function of the .central forces” with centers 0 and Or, as shown in [2], is 

a function of the single coordinate P. 

Let us next consider the question of integrating the system of equations (2.5). (2.8) 

and (2.9) when the forcing function of the given forces depends only on one coordinate u 

f-central forces”).This problem can be investigated in two stages: first by considering the 

magnitude of u, u, o, r, n and then considering the question of determining the remaining 

variables uI, ur and ZE. Assume that the center of inertia is at the geometric center of the 

sphere, bounding the body. In this case the problemof calculating u,, v. cr. r and n leads 

to the integration of two equations 

sin 2~~: + (MRa -J- A co9 u -I- C sina u) f& + 

+ (lMRa + (A - ‘3 cosau](i-&)+Acosau+Csin*~}n+ 

+[;(A-C)(p) sin 2~ + (A+MRa) cot u 

(A sh2 u + C co9 u) gu + !& (A - C) sin 2~4:: - 

-ii 
sin2u R-2 n- sinau 5-1 +cosau u (A-C)=% 1-R sinu 

(R, ) [ (R, ) ] } ( R1) 

which are obtained from the first and third equationof the system (2.5) (divided by u’ and 

rearranged). 

Adding the first equation (2.11). multiplied by - tan u, to the second we get 

- (MRa 4 C) +g + u) + Cs + [($- 1) MR* - C]tanun = 0 

and adding the second equation, multiplied by tan u. to the first 

(MR* + A) da &.l + C(P) (A 
- C)tmu + (MR2 + A) cot u 1 u + 

+Atanu~+[(~-1)(C-A-MR2)+A]n=(i-~)c& 

By changing the variables to 

E = sin u, ‘1 = sin au, 5 = Cos un 

the above equations become 

-(MR*+C)~+C$+($.-~)MR~&~~=O 

(2.12) 
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Making one more substitution z = 1 - k2, we obtain from the first equation 

drl C dc 
d< = MRa + C di 

(2.13) 

and from the second 

(MP + A) xi: .+g- ) 1 (A-c)‘1-‘1r~+~~~-1j(MR’+cl-C)5+ 

+q$_as,+(+j 
Differentiating it with respect to x, and substituting equation (2.13). we obtain a Fuch’s 

equation [8,9] with three singular points a’ = 0, b’ = - m,and c’ = 00 (A # C) 

d2j x2 (m + x) - - x - m - 
dxL t 

1 x 
2 j t 

2-t ; ,rz - k2x j = 0 
j, 

(,n _ &(MR2 + C) 
\ MHz (C 2 :I) 

, k =f(+jj 

Equating this to the general equation of this type in Papperits’ form [8,9] 

we find 

%+(i;“;“’ + ‘_;+$j%+ 

+i 
(a’ - b’) a!z + (b’ ---‘2,8B’ + :‘I’1 7c _ a& _ b,) = 0 

x - a’ 

This enables us to write the required solution in the form 

1 

0 -,I)L M 

PI 0 kr 
1 1 

0 1 co 

= XP 0 0 Ifk (-x/m) 
1, ,2 - ‘Ia - k - ‘I, - liia l-k I 

It follows that the function l has the form 

and for the case R, = 30 (the base-sphere becomes a plane) 

5 = cosu p,cosujt q!y {- c2] 

Now, considering the known relation 

d F (Q, b; c; y) = $ F (a + 1, b + 1; c f 1; y) 
dy 

and using equation (2.13) we can determine the quantities r) and u, as functions of the vari- 

able n. Afterwards, substituting the expressions for n and D into the integral of kinetic 

energies, the problem of determining thevariable II, as a function of time, is reduced to a 

quadrature. This completes the first stage of integrating the system (2.5). (2.8) and (2.9). 

3. We shall now investigate problems, similar to the ones studied by Noether [4], which 

are also of the above type. Namely, we shall assume that the moving body is a “uniform 

sphere”. In this case equations ( ‘.2) are unchanged, equations (2.3) become 
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pa = Jp , &=O, q=o, e=R 

and the expression of the kinetic energy 

(3.1) 

28 = (A + MR4) (a’ + 9) + An’ (3.2) 

Using (1.4). (2.2) and (3.1). based on equation (1.6) we obtain the equationof motion 

of a *uniform sphere” on any fixed surface an 

(MRa+A)d+(~+u’)An-((n+u*cosu)(MR’+A)s=P* 
(MRa + A) Y + (n + u* cos u) (MB* + A) u - (a - Jsin u) An = P, (3.3) 

n*- (u’a + sin uu’T) = P, 

Consider the problem of the motion of this body under gravity on the surface of para- 

boloid of revolution i ; the method of solution of an analagous problem for the case of any 

other surface of revolution will be the same as in the given particular case. 

The base -paraboloid is described in the system 01~~~ by the equations 

$ = 
1 u1 cos VI, X: = ul sin ur, l- i 

x9 - - - ur* 
2P 

(3.4) 

The following are then derived 

If the concave (convex) aide of the bounding sphere of the body iein contact with the 

convex (concave) side of the paraboloid, we have ee = eS 1 (this case in preclented below). 

The equations of constraints are here 

V- Pa + w2 

P 
ul' = RJ sin 6 - R sin uu’ cos 6, 

The projectionsof the body angular velocity 

(r=_ vpgia + ula) sin 6 cos 6~' - 

(3.6) 
uIul’ = Ru’ cos 6 + R sin ub sin 6 

on the axes of the moving datum are 

(3.7) 

-_ 

[ 
sin n + VPr +Ru:iL+ ula) (Pa + ula sins 6); u’ 

1 

2 

Z= 
- 1 + vmy(pa+ ~12) (Pa+ ulacosa~) u.+v~~2u;ula, sin6 cos6J 

I 

n=- cos uv’ + 
. 

Vl - 6’ 

The forcing function of gravity I, according to (3.1) and (3.5) can be written as 

1 In [4], the center of gravity and not the point of contact moves on a paraboloid of 
revolution. 

’ We investigate the case of the body motion on the concave aide of the paraboloid, with 
the axis O1xk directed vertically downwards. 
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Rp 
I/a p -t wa (3.8) 

[Jsing (1.7) we find 

P, = f (Ul) co9 6, Pa= /(IQ) sin 6, P, = 0 

We shall now proceed to integrate the system of equations (3.3). (3.6) and (3.7) directly. 

First note the relationsobtained from (3.6) and (3.7) 

Next add the firat equation (3.3). multiplied by -sin6,to the second equation (3.3). 

multiplied by cm 6, and transform the sum using (3.6). (3.7) and the above relations. The 

reanlting equation is (A = Mk’) 

+2 n=O 

Uaing the eame (3.6) and (3.7), the third equation (3.3) becomes 

dn u1* 
-5- 

dul pR (p' + ~13 
Y' 

Making the anbstitntion I = p w -J- ui)-%, the second equation gives 

Y 
. _ R X’ dn ---- dvi R 

p i-x’dx’ dz -; 
-_ 1 (3.9) 

and the first eqnation is written as 

Eliminating the quantities v,’ an d dv,‘/dx, from the last equation aaing relationa (3.0). 

we obtain, for the l elation of fnnction n, the following Fuch’s equation [8,9]: 

Ita l olotion hao the form 

n=zP&P(2+a,a; ~+2a;y)+cly~~~(2-a,-ua;i-24;y)l (y=R~-‘x) 

The second on&own function vt’ io now obtained from the first relation (3.9). 

Note further that for the motionof a body, boanded by a sphere, on any scrface, we can 

derive the following equation using (1.4) sod (1.5) 

19 .+ 7a = ul*l ( ~+~*2~ 
(211 ) ( +4’” ~+~*29 

42 ) (3.10) 
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Next, substitute this equation and the functions n and ur* obtained above into the in- 

tegral of kinetic energies. We thus find that the problem of determining the variable ut (as 

a function of time) is reduced to a quadrature. 

It is still left to find the variables u, u and 6. Rut from relations (1.5) and equations 

(1.4) for the motion of a body, bounded by a sphere, on any surface, we obtain three equa- 

tions 

R sin ud = rl/G U; cos +3 + 1/& v< sin 6 

W=--nT I_ 
( 

aa’ aa’ 

2 JLz&z& 

__-!I u; - 2a v; 
1 

- v’cos u 
avl au1 

(3.11) 

i.e., we have here the same situation as was studied by Woronetz. This problem, inciden- 

tally, has much in common with the previous one, in particular here the coordinates ur, ut 

and u, v and 13 are obtained in the same way as we obtained the coordinates u. v and us ut 

and 13 (respectively) in the second section. 

We shall now present another example of the same type (a simple, but nevertheless 

interesting one), the problem of the motion of a heavy suniform sphere” on a fixed sphere. 

Proceeding here in a similar fashion to the paraboloid problem, using (3.3). (2.8) and 

(2.9)r we obtain the equations 

f (MfP fA)'+[-$ViSin U& + U,‘ViCOS UI] - AnU,‘= 0 
(3.12) 

n = const 

Multiplying the first by sin u, and integrating the product we get (A = MP, x is a con- 

stant) 
v,‘sins ut = 0 - b cos u1 - _ 

B 
xR kVZn 

= M (R’ + ka) (R T R,) ’ ’ = * (R’ + k*) (R ‘F R,) (3.13) 

Next, using (2.8) - (2.10) and (3.2), theintegral of kinetic energy can be written as 

+‘a + vi- sin* u1 = a - a co9 ul 

a=2h --An’ 
(RR’ + k’P;R ‘f R,)’ ’ a = * 

2R2g (3.14) 

M CR2 + k2) (R T HI) 

and eliminating u,‘, by means of (3.13), and substituting z = cos ul, we obtain 

=(a - az) (1 - 2’) - (fi - bz)2 

The right-hand side third order polynomial is positive when z = - oo,negative when 

I = f 1 and positive for some values of x, between - 1 and + 1, since in the actual motion 

u, has real values, i.e., it has roots 

- m<ca<- f<cz<e,<i 

Assuming, as usual, x = ci j- (es - er) a*, we get the equationunder investigation 

into the form 

’ For cg = - C: different equations are implied. 
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f 
do 

f(i - 0’) (i - kw) 
3 $ l/a (es - el) dt ( kZ -= ZLZAj 

3 1 

Thuo, the problem of finding the variable x has been reduced to the inversion of an 

elliptic integral, and on the baais of this equation we can write 

z = ex + (ea - eJ sna (‘/a V o (ea - eJ r) 

The variable vt is now determined from relation (3.13). 

Note that the integrals (3.12)-(3.14). which lead to the equation of this problem, have 

the same form as the classicintegrals of the problem of the rotation of a rigid body about a 

fixed point in the case of Lagrange [LO] (p. 176). and for R f = 0 (the problem degenerates 

into the above mentioned Lagrange case) from geometrical considerations and equations 

(3.11)-(3.14) we find (es = - et): u = cod, v = con& n = - r, IQ = 8, v1 = 

= 9, 6 = cp. 

Using equations (3.13) and (3.14), it is easy to indicate the shapeof the curve des- 

cribed by the contact point on the fixed sphere ([lo], p.178) between the parallels x = e, 

and x = ea. We can pursue the analogy between these problems deeper (the problem of 

body motion in the Lagrange case andin thecaseof the rolling “uniform sphere”). In parti- 

cular, if in the second problem with t = 0 we have ur,,’ = 0, vI,,* = 0, no # O,and uIo # 0, 

we get the well-known particular solution, the detailed description of which presents no 

complications ([IO], p. 181). 

Next, we shall consider the question of stability, for the caseof surfaces in contact on 

their convex sides, of the particular solution 

ur’ = 0, v; = 0, n = no, sin u1 = 0, cos 111 = - 1 

The stability will be investigated with reference to the variables 

. 
Ul 7 SlIl U,Vl , n, sin ul, cos ur 

assuming in the disturbed motion 

*- 
Ul -4, stn ulvl *- - tf, n = no + E, sin u, = fi, cos u1 = - 1 g 8 

Note first that in this problem we have the first integrals 

(MR~ + A) (Rq)a (OCR’*+ sin*ulv,‘r) f AnP- 2Mg (R i- RI) cos u1 = 2h 

(MRa f A) v (sin ulvr) sin u1 -An cos UI = x 

sin au1 3.. cos G1 = 4, n = no 

From the above it is easy to obtain the first integrals V,, V,, V, and V, also for the 

equations of the disturbed motion. 

Now, to determine the sufficient conditions for stability we construct, by the method 

of Chetaev, Liapnnov’s function in the form of integral relations [II] 

v = v, + 2AVa - [Mg (R -I- R,) + An&l V, f pV2 - 

- 2 (An, + Ah) VI = (MRZ -l- A) (R+)2 E” $- (MR2 + A) (y)’ qz + 
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R $_ 4 
+%(MR’+A) R - ‘IS - [Mg (R d RJ + An&l] B’ + (A+P) P- 

--WA& - [Mg (R + R,) + An&] 6’ (A’ = (MR’ + A) (A I- p)) 

The function will be positive-definite if 

A%$ - h(MR”+A)Mg(R+RJ>O 

which for R, = 0 becomes Maievski’s condition. 

In conclusion, we note that for the caseof Ytniform sphere” motion on a fixed sphere 

under the action of a “central force” with centers 0, and 0, the variables u. u, u, I and n 

are obtained in the same manner as in section 2, and variables u, and ut as in section 3, 

i.e., the problem is fully solved by quadratnres. 

4. Next we shall investigate the problem of the motion of a body of revolution on a 

sphere in the case when the body rests on the sphere with its plane- bounded end. 

Assuming first that the base-surface is any convex surface, we shall derive the equa- 

tions of motion of this body. The equation of the surface in the system Oz,zaxa has the 

form (the coordinate of the point of intersection of the axis of symmetry of the body Ox, 

with the plane relative to the same axis will be denoted by d) 

Xl = u cos v, xa = u sin v, x8 = d (4.1) 

We therefore find 

=lt= i, aas = ua . b, = 0, frr* = 0 

4, = 0, I,, = 0, I,, = 1 
(4.2) 

p’ - 3 +da, & = a, q = 0, e=d 

The expression for the kinetic energy is 

28 = (A -f- MaS) ua f (A + MU* -I- MG) d -I- (C + Mu*) n* - 2Mdum (4.3) 

Now, using (1.4) and (4.2), we derive the required equations of motion (a rotor is 

added to the body) 

$ g ;t- rg - (n + v’) z + Mu% = PI - XT 

gg+ (n$J) &Jg- Muzu’ = P, + SUI 

T?$ + Md (u’o + uv’z) - Munu’ = P, 

(4.4) 

Next we shall return to the original problem, i.e ., assume that the base - norface in a 

sphere, which is given by equations (2.6) in the system Orx$# and for which equations 

(2.7) hold. The axis Ox, is here taken in the direction of the sphere, therefore we have 

e, = - ei. We shall now obtain the necessary kinematic relations. The relations (1.5) 

are here 
R,u,’ = - u’ sin 6 + uv’ cos 6, Rt sin ulvl’ = u’ cos 6 + uv’ sin 6 f4 5) 

. 

The projections of the body angular velocity on the axes of the moving datum are 

tJ=*V. 1 

RI ’ 
z = - - u’, 

RI 
n = - v’ - co9 UlVl’ - 6’ (4.6) 

Let us also consider some details. First, we shall obtain the expressions for the 
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projectionaof the body angular velocity and the projections of the velocity of the center 

of inertia of the body on axes Oqzpz~ 

p = a co3 v - 7 sin v, q = u sin v + x cos v, j. :=z n 

k = u sin vn - d (a sin v + t cos v) 

1 = d (a cos v - z sin v) - z4 Cos vn, m = UT 

Second, describing expressions (1.9) by ,neans of (2.6) and (4.1) and comparing them 

with the corresponding expreaaions on p. 45 [ 121, we find the values of Euler’s angles 

between axes OxIz,xl crnd OIz:$z~ 

8 = II - I+, $ = - v,n + vt, cp=rr--v--6 (4.7) 

Finally, we shall indicate the form of the forcing functionsin some interesting cases. 

The gravity forcing function (the axis 0,~: is taken vertically upwards), according to 

(1.10). (4.2) and (2.7) is here 

CJ = - Mg [(RI -I- d) cos u1 - u siu uI sin 61 (4.8) 

and thaa, aaing (1.7), we find 

PI = Mgd sin u1 cos 6, P, = - Mgu sill ut cos 0 

P, = Mgd sin u1 sin 6 + Mgu cos u1 

Alno, the forcing function of .central forces ” with centers 0, and Q, as shown in [2], is a 

fnnction of only one coordinate u . 

We ahall now proceed directly to the integration of the system of equations (4.4), (4.5) 

and (4.6) with the condition that the forcing function of the given forces depends only on 

one coordinate u, and that d = 0. The task of determining the quantities U, v, v, 7 and n 

reduces here to the integration of two first -order linear equations with two functions u and 

n independent of u (C = Mk’) 

da C-An a x1 dn 
----jj,+ y ri_Ir,T du A 

(k2 j- u2) - f *Ln - u* -Y- = () 
du Ii, 

which are obtained from the first and third equations (4.4) (they were divided by u ). 

Changing the variables to 

c _ ..I 

(. ! 
1,: 

G = I/ka+ u2 I- . !I IlO, (4.9) 

these equations become 

t11/ I s ^/. (1. !/ 

dx II, N, CT--A’ dc N, 
It follows that 

y= ,+xIR, + C+ x RI _ -i;‘?:?i, z _ cl?“‘ RI _. (y,,> x fil _ &!$- 

Using equations (4.9) and denoting by uo, ~0, 710, and o,, the corresponding quantities 

at the initial instant of time, the solution becomes : 

U(J = (uouo + r>cosh((~ -- a,) -j- (no l/f? -{- u$n~ i- rzqJ8inh (a - To) - r 

n m& -= (~0, ~,-7) l inh(u - a& + (no I//S + uo2~n + ra,) =0~h (a - ao) - ra 
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Now, using the integral of kinetic energies, we get the relations (f, (u) and f, (~1 are 

known functions of the coordinate u 1 
dv 

= l-l*2 (02 f r2) = j1 (a), u2 -x = RlW = j, (4 

on the basis of which the problem of determining the variables u and u, es functionsof 

time, is reduced to a quadrature. Thus, the question of determining the quantities u, v, 

cr. r and n is resolved. 

The author thanks V.V. Rumiantsev for his assistance. 
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