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The problem of the rolling of a rigid body with a finite surface, on another fixed surface,
has been investigated by many anthors. We should first note the investigations [1-7],
which contain almost all the basic results obtainedon this problem up to the present time.
This paper, using the method of Woronetz, considers the case of the rolling of a body of
revolution® on the surface of revolution and points out some new cases of integration.

1. Consider systems of rectangular coordinate axes Oz,z,z, and O xiz}al (iy, iy, iy
and i}, i}, il are the respective unit vectors), rigidly connected to the rigid body and the
base surface respectively (all coordinate systems in the paper are left-handed). This en-
ables the position of the body with the coordinates z, x;o, "":130 of point O in the system
O,x}z}z} and Euler angles ¢, i/, § (pure rotation, precession and nutation) between the
above axes to be determined. The components of velocity vector ¥V, of point O and the body

angular velocity vector @ on axes Oz,r,r; are denoted by &, [, m and p, g, r.

Further, considering for the points of surface S, bounding the rigid body, a radius-vector
p starting from point O and Gauss coordinates ¢*, ¢*, gives its equation in the form

e=el(g ¢ (@ = #iiy + z5i; 1 25iy) (LD
and the coefficients of the first two quadratic forms will be denoted by a;,, asq, by, by,
{for simplicity, we assume that the coordinate lines of the surface are lines of curvature).
To the point of contact M on surface S we shall attach a moving datum Mg'g2n with unit
vectors, directed along the tangent to the coordinates and the normal,
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1 A body of revolution is understood here to mean a rigid body, bounded by the surface
of revolution, the axisof which passes through the center of inertia andis also the dynamic
axis of symmetry of the body.
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and shall denote the components of vector p on these axes as
t dp 1 r)p

R n TIPS € 2 = x? CREE R
s V’ll pﬁ([ 1 (Ir)ry[ g (p fillin ol 39 (1.3)

We shall also introduce the nine cosines of the angles between axes Or;r,r; and
Mq'q*n using the expression

I = 10y = ey 4 10y (k=1,23)

The above comments for surface S, bounding the rigid body, are also valid for the base
surface §* (corresponding variahles are denoted by the same letters, but indexed). Further,
following Woronetz, we shall determine the position of the body using the generalized co-
ordinates ¢!, g%, q}, g3, ¥ (the first four are the Gauss coordinates of point ¥, and ¢ is

the angle between the axes ¢* and g} at the same point).

The projections of the body angular velocity @ on the moving datum axes Jg'¢*n are
given by the expressions? (here and below, the upper and lower signs correspond to the

case ¢; = el and e;= —e! respectively):
1 1
b b,
0= — V-n 2;{;—:(}1 sin & — Lm:q1 cos
T2 RE? S|
bu . bl 1 (1.4
T= =g — _q “sin O F Hr] " cos
Vay al, ! Va i !
1 (aau 1 6a22 & ) (aau 1 6‘1;2 o\ df
- 9 — 19— gt
Vauazz 8q 2 Va al ‘9‘12 ! (9(]{ L/ dt
In thisproblem we have the relations (1.5)

T At — 1 g ~— o — . - —
V(I}I’II =+Vayq"sindF Vg ¢% cos 9, Vaég q? = Vayqt cos 8 + V agy ¢% 5in
and equations (1.4), using the above, can be written as

6=~y Van " — L Vg ¢%, T= Ay Van '+ 20 Vagd®
n= — 8 LA Vayg" —AVan ¢

where 1 1

by . bll . bzz b}-) b!
D= F s Lop= + i sin? 9 F I cos2 ©
B 11 Q9o L% 22 ab
1 1
by by
JANTS A-n = :F 1 1 sin O cos O
Qa9 ag;
Ay 1 Otegay sin 9 dlegay + cos 9 dlogal,
2 — —_— i -
2Van % 2Val, oq 2V ol oy
A, o — . Olomay ¥ sin @ Ologay,  cos Olesa
2 = 7, = Fal Y 1 .- — 5
N Y A T R [

3 The first terms in these expressions are the projections of the angular velocity of axes
Ouryz,x, relative to Mglgn on the same axes Mglq2n, they are denoted below by oy, 7;
and n,.
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The equations of motion of a rigid body, of finite surface, moving on another fixed sur-
face, when point O is the center of inertia, are

0 a8 26 . — s
‘5;%7—%- t—m) 5, — (r—n) G + M ET—no) Vaug =P
d 90 04 28 —
T o T =) 55— (0 — o) g — M Et— o) Vayq =P, (L.6)
d fi,c] 00 ‘
P D R
— — ap o .
+ Me(Vay ¢'o+ Vg g¥v) — M <pa— R ) = P,
Nazg U _Daa oU _ll_ =1, 2
= _Va—uR‘ ot V“zzH 6(] —+ (Na2a 4+ Aarlie) 58 613 + (@ » 2)
1
+ = Vo - 7 (N go8in B 4 A\, cos ﬁ) Va (Aa2 cos® —A,, sin t}) q’
a
OU (1.7)

Py= — Gy

Here @ is the kinetic energy, derived using (1.5), U is the forcing function and R =

= ANulay — A?g'

Assuming that the axes Ox,z,2, are the principal central inertia axes and denoting by
A, B, C the principal central moments of inertia, we get
28 = Mp? (0% + 1® + n?®) — M (Eo + nt -+ en)?

+ A (Ol + tlyy + nly)? + B (0l + Tlyy + nlg)? + C (05 + tlyg + nlgy)? (1.8)

Also, the cosiness of the angles of the axis Ox, with axes 0,2}, Oyz;,a0d Oz} are
(the corresponding cosiness for axes Ox, and Ox, are obtained by changing [, Ly s
t0 g, lag, Igpand lyy, Loy, I3y) (1.9)

Iy (+ B+ Iy (F Bycos® 4 & sin®) + 4, (+ ¢ ksmﬁ+ B,cos0) (k=1,2 3
The expressions of the coordinates of the center of inertia in the system le}x;x; are
ho = 7 — [(4 B sin ® + 1, cos 8) & +

(1.10)
+(3Flkcosﬁ+lksm0)n+(j:l el (k=1,2,3

2. We shall now consider some problems of the rolling of a body of revolution bounded
by the surface of revolution
xy = ucosv, x,=usinv, z3=f(u)
on another surface of revolution
1 1

1= W oS vy, oz = wpsinyg,  xy = fl(u)

z
in which the forcing function is of the form U (u, ¥, u,). Such a case occurs if the body is
under the action of gravity and the axis O,z is vertical, and also if the body is acted on by
forces, the resultant of which is directed from the center of inertia to the point 0, of the

axis of symmetry of the base, and depends only onthe distance between these points.

We shall first consider the problem for a body bounded by a sphere. The equation of the
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sphere, in the system Ox,x,z; has the form (I is the coordinate of the geometric center
relative to axis Ox,)

;= Rsinucosr, zy=Rsinusinv, x;—1!=Rcosu (2.1)

Using these equations we get

u=R3y ayp=Rsin*u, b,;=—R, by=—Hsin>u
Ly = — sin u, lys = 0, lgg = cosu, p?=R?+ 2Rcosu+ 2 (2.2)
£ = — lsinu, n =0, e=R -+ lcosu (2.3)

With equations (2.2) and (2.3), the expression for the kinetic energy can be written as
20 = [A 4+ M (R®+ 12 4 2Rl cos w)] 1 + [M (R + lcos u)? + Csin® u +
+Acos?ulo?+ 2 [(4 —C)cosu-+ MI(R -+ [cosu)]sin uon +

4+ [C cos?® u +( A + MI®) sin? u] n? (2.4)

We shall now derive the equations of motion (1.6) of the body of revolution, bounded by
a sphere, on any fixed snrhce.

:t gg + (t+ u) — (n+ v cos u)%%— MIR sin? utv’ = P,
dta‘l.' + (n+ v cosu)._ c — v smu) + MIR sin utu’ = P, -
dae-}—(o—vsmu)__ (r-{—u)_—{— M (R + 1cos u) (Ru'o + R sin uv't) +

dt on
+ MIR sin unu® = Py

We shall assume that the base surface is also a sphere, the equations of which in the
system le}z;z; are

z} = Ry sinu,cos v, =z =R;sinusiny, z=Rycosy (2.6)

and for which, based on the above calculations (2.2), we have the analogous expressions
al, = R3 a} =Rpsintw, b, =—R, b,=—Rsin‘y @
By = — sin u,, =0, 1L, = cos u .

If, in the rolling body, the concave (convex) side of the bounding sphere is in contact
with the convex (concave) side of the base - sphere, we have e, = e} (this case is presented
below); however, if the surfaces are in contact on their concave sides we have e, = — e;

The equations of relations (1.5) in this problem are

Ryu," = Ru’ sin ® — R sin uv cos 9, R, sin u;v,” = Ru"cos & + R sin uv’sin @

The projections of the body angular velocity on the axes of the moving datam (1.4) be-
come here

1 If in the rolling body there is a rotor turning about axis Ox, with constant velocity
‘, the center of inertia of which coincides with the center of inertia of the body, then the
following terms are added to the right sides of equations (1.6) M, 4, B, C arethe mass and
moments of inertia of the whole system, C”is the moment of inertia of the rotor about axis
Ox, and Ozg, x = C'0’):

% (nlyy — Tlgy), % (0133 — nlyy), % (Tl — 0lgs)
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o= _R—F R sin ur, T= B_R—_RA w, n= —cosuv+ cosuuv —0 (20)
1 1
Finally, the forcing function of gravity (to be specific, we shall take axis Ol:t:l, verti-

cally downwards), according to (1.10), (2.3) and (2.7), is here
U = Mg [(R, — R — lcos u) cos u; — Isin u sin u, sin 8] (2.10)

and the forcing function of the ®*central forces” with centers O and O,, as shown in [2], is
a function of the single coordinate u.

Let us next consider the question of integrating the system of equations (2.5), (2.8)
and (2.9) when the forcing function of the given forces depends only on one coordinate
(“central forces”).This problem can be investigated in two stages: first by considering the
magnitude of u, v, 0, 7, n and then considering the question of determining the remaining
variables u,, v, and 0. Assume that the center of inertia is at the geometric center of the
sphere, bounding the body. In this case the problem of calculating 4, v, 0, r and n leads
to the integration of two equations

%(A—C)sinZu%—{—(MR“—I—Acos”u-}—Csin’u)‘fl_%_}_
R 2 1n2
+{[MR’+(A—C)cos“u](i—ﬁr)—*—Acos u + C sin u}n+
1 R . 2 - R
4| —0C)(5—2)sin 2u + (A+MR?) ecotu|o=x 1—_-)cosu
[2 (R‘ ) ] ( l)(2.11)
(As1112u+0coszu)%+}2_(A_C)sinzujiu_

_{_t sin2u(§—2)n—[sin2u(§.—i) + cos? u]o}(A—C) =x(1—

R\ _.
_) sin u
1 1

1

which are obtained from the first and third equation of the system (2.5) (divided by u " and
rearranged).

Adding the first equation (2.11), multiplied by — tan u, to the second we get

—(MR’-}-C)éanu._ +0)+C_+ [(Rﬁl—i) Mm—c]umunz 0

and adding the second equation, multiplied by tan u, to the first

(MR? + A)g- + [(%— 1) (A— C)tanu + (MR + A) cot u]o+

d R —(1_RYy x
v () € ] (1) 2
By changing the variables to
E=sinu, MnN=sinus, { = cosun (2.12)
the above equations become P
— n 2
(1111124—0)d§+cd§+(ﬂ1 )MR — gzc
dn R _ E df
(mzz+,4)dg +( 1) =0 =g -4 :TE +
_R 3 1 dl Tt
1— —
(1) MR A -0 Rty §=(§+1 zg) (- e
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Making one more substitution x = 1 — £?, we obtain from the first equation
dn____(_}__“(gg_i E-—l)_ﬂ&é (2.13)
dr  MR*+ Cdc 2(31 MR* - Cx= ’

and from the second
dn 1t /R dg 1 /R ,
R? M _ (54— — Az __—1)Mm A—C
(MR + 4) = 5 2(1{1 )¢ I = Azt (1) MR )&+
dg 1Ly _ 1 (R _,
(G- ze) =2 m Y
Differentiating it with respect to x, and substituting equation (2.13), we obtain a Fuch’s
equation [8,9] with three singular points ¢’ = 0, b’ = — m,and ¢’ = © (A = C)
z2 (m + x)%—— x(%m— x)%_{- <é— m — k%)g =0
(m=AGIR L0 1 (R )
\ MR2(C — A1)’ 2 \R,

Equating this to the general equation of this type in Papperits’ form [8, 9]

d2t {l—a—a | 1—B—p\dg
6172+< £ —a' + x — b /3;
(@ —b)oa’ (¢ —a) BB . .., : _
L R HT]‘QW"O

we find

a = 11 ﬁ = 0! T o= k, (1.’ - 1/2y ﬁ, = — 1/21 ’T/ = k

This enables us to write the required solution in the form

0 —m oo 0 1 oo

P{i 0 k x}:xP{ 0 0 1+ k (—x/m)}
1‘/2 . l//2 — k _ 1/2 — 1//?‘ 1— k%

It follows that the function { has the form

choszu{CIFP—{-%(;Ti_g, 1— 1<

1 t  1/R 1t 1/R o1 cos?u
Co——F| o (= —1), - — (2 1), 1 —
B e e 1 e

and for the case R, = o (the base -sphere becomes a plane)
{=cosu [(}1 cosu<1 + g’il) e (,}
m
Now, considering the known relation
LF@bGy=2Fat1,b+fict 15y
and using equation (2.13) we can determine the quantities 7 and o, as functions of the vari-
able u. Afterwards, substituting the expressions forn and o into the integral of kinetic

energies, the problem of determining the variable 4, as a function of time, is reduced to a
quadrature. This completes the first stage of integrating the system (2.5), (2.8) and (2.9).

3. We shall nowinvestigate problems, similar to the ones studied by Noether [4], which
are also of the above type. Namely, we shall assume that the moving body is a *uniform
sphere”. In this case equations (’.2) are unchanged, equations (2.3) become
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pz = sz g =0, M= o, e=R (3'1)
and the expression of the kinetic energy
20 = (A 4+ MR?) (02 - 1%) 4- An? (3.2)

Using (1.4), (2.2) and (3.1), based on equation (1.6) we obtain the equation of motion

of a “uniform sphere” on any fixed surface as
(MR* 4+ A)d"+ (v + u)An — (rn + v'cos u) (MR* 4 A) v = P,
(MR? 4 A) v 4 (n + v'cos u) (MR2 4+ 4) 0 — (0 — v'sin u) An = Py, (3.3)
n'— (u'0 4 sin uv't) = Py

Consider the problem of the motion of this body under gravity on the surface of para-
boloid of revolution?; the method of solution of an analagous problem for the case of any
other surface of revolution will be the same asinthe given particular case.

The base - paraboloid is described in the system Olziz;zg by the equations
1

Tl = uycos v, a3 = wysiny, z5=-— -27’14;’ (3.4)
The following are then derived
2 2 w?
ah:p____._—*_au1 ’ a%z =u?, b}l = — ____1._ , bz‘2 = 1
P Vo4 we Pt ow
Bo=—_ %W __ p=0 IL=__P _ (3.5)
13 23 33
sz + u;? ]/.P2 + u?

If the concave (convex) side of the bounding sphere of the body is in contact with the
convex (concave) side of the paraboloid, we have ¢; = e; (this case is presented below).
The equations of constraints are here

Vpa + u? (3.6)

> u;" = Ru’sin & — R sin uv" cos ¥, uyv," = Ru’ cos ® 4 R sin uv' sin &

The projections of the body angular velocity on the axes of the moving datum are

2
Ruy

VPt et

0 ==

sin 9 cos Yu’ — 3.7

. R sin u . ..
— | —si + 2 2 29 '
[ o Vp2_+ulz(p2+u1=>(p+u’ O

R sin uuf

VP ud (0 u?)

sin ¢ cos 0v°

T=|—1+ R (p% + wrtcos? @) ¥+
sz Fur® (P + w?)

n=—cosur+_2 _ p &
Vp2+u12

The forcing function of gravity ?, according to (3.1) and (3.5) can be written as

! In [4], the center of gravity end not the point of contact moves on a paraboloid of
revolution.

1 We investigate the case of the body motion on the concave side of the paraboloid, with
the axis 011:313 directed vertically downwards.



688 Tu. P. Bychkov

U= Mgz} = — Mg(— w4 — 22 )

Vet - w

(3.8)
Using (1.7) we find
P, = f (u) cos 8, Py= f(u)sin®, Pg=0

We shall now proceed to integrate the system of equations (3.3), (3.6) and (3.7) directly.
First note the relations obtained from (3.6) and (3.7)

Voatuw &
VP’+“1( P 1) u’

tcos® —osind = ul(__l.____i)v{

tv8in® - 0gcos @ =

p Y p* ¥ u (p* + ws) R

Next add the first equation (3.3), multiplied by —sin¥,to the second equation (3.3),
multiplied by cos @, and transform the sum using (3.6), (3.7) and the above relations. The
resulting equation is (4 = Wk?)

u,(_.1_+ 1 )P+:f__
VP +ul) P dy
1 P P ut 2
+2f{—- — =
( R+Vm(p'+uﬂ)) T EeE T
Using the same (3.6) and (3.7), the third equation (3.3) becomes
ﬂ ul .
du; . pR(P+ W)

Making the substitution x = p (p* + uf)"/’, the second equation gives

W=

R 2 dn dv,’ R[ 2 d'n | 23(3 — 2%)dn (3.9)
— + 3 ——— .
p 1T 2Adz° dx 1= *da (1 — a%) dz]

and the first equation is written as

1__3_1(1 R)pdvl 2( Rz,)

z B\ p

Fdz — A R'—T—‘”‘O

Eliminating the quantities v,’ and dv,’/dx, from the last equation using relations (3.0),
we obtain, for the solution of function n, the following Fuch’s equation (8,9]:

_P\adn P\ dn P & 2 =K
(z R)z’d_z’+(3z R)zda:+Ran 0 (a R’+k’)
Its solution has the form
=2 [CF 2+ a,0; 1+ 20,9) + CyPF QR —a, —a;1—25y] (@ =Rp'2)

The second unknown function v,’ is now obtained from the first relation (3.9).

Note further that for the motionof a body, bounded by a sphere, on any surface, we can
derive the following equation using (1.4) sad (1.5)

1
0 12 =y (;1: (b} 1)’___t2 bu) <Gn+(b;,)’i2 ) (3.10)
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Next, substitute this equation and the functions n and v,” obtained above into the in-
tegral of kinetic energies. We thus find that the problem of determining the variable u, (as
a function of time) is reduced to a quadrature.

It is still left to find the variables u, v and . But from relations (1.5) and equations
(1.4) for the motion of a body, bounded by a sphere, on any surface, we obtain three equa-
tions

Ru =4 Va—};ul' sin ¢ + Va%zvl' cos ¢

R sin w* = :FV;}—I u,' cos & + Valzz vy'sin & (3.11)
1 1
. 1 (aall '_a_a” ')— " cos u
¥=—nF <1 \Op; 6u1v1 v

11
2V ajay,

i.e., we have here the same situation as was studied by Woronetz. This problem, inciden-
tally, has much in common with the previous one, in particular here the coordinates u,, v,
and 4, v and ¢ are obtainedin the same way as we obtained the coordinates 4, v and u,, v,
and @ (respectively) in the second section.

We shall now present another example of the same type (a simple, but nevertheless
interesting one), the problem of the motion of a heavy ®uniform sphere” on a fixed sphere.

Proceeding here in a similar fashion to the paraboloid problem, using (3.3), (2.8) and
(2.9)' we obtain the equations

RF R [d, o . . .

+ (MR® + A) :'; 1 [E (v sin uy) + uy” v," cos u,] —An =0 o
n = const

Multiplying the first by sin 4, and integrating the product we get (4 = M3, % is a con-

stant) v°sind u; = B — b cos i,

= %R — kRn
(p_ M@EB+ ) (RFR) b= R+ (R E Ry ) (3.13)

Next, using (2.8) — (2.10) and (3.2), the integral of kinetic energy can be written as
u? -+ r?sin®u; =a —acosy
q—=2h—Aan R? =4 2R%g
(+==% R+ ) R FRP (R + ¥ (R F Ry

(3.14)
)

and eliminating v,’, by meansof (3.13), and substituting x = cos u,, we obtain

(&) =@ — ) 1 — 28 — ¢ —bap
dt

The right-hand side third order polynomial is positive when # = — o0, negative when
z = 4 1 and positive for some values of x, between ~ 1 and + 1, since in the actual motion
u, has real values, i.e., it has roots

—o L gl 1< egCg<

Assuming, as usual, z = ¢; 4+ (¢; — ¢,) ®?, we get the equation under investigation
into the form

' For ¢y = — e:‘, different equations are implied.
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2 L a (e3— €1) 2 - € — €
Vi —o%) (1 — Bod) - Vale,—e)dt (,,z e}'—-?i)

Thus, the problem of finding the variable x has been reduced to the inversion of an
elliptic integral, and on the basis of this equation we can write

z=1¢ 4+ (ea—e)sn? (Y Vale—e)?)
The variable v, is now determined from relation (3.13).

Note that the integrals (3.12) —(3.14), which lead to the equation of this problem, have
the same form as the classicintegrals of the problem of the rotation of a rigid body about a
fixed point in the case of Lagrange [10] (p. 176), and for R, = 0 (the problem degenerates
into the above mentioned Lagrange case) from geometrical considerations and equations
(3.11) - (3.14) we find (¢ = — ¢3): u = const, v = const, n. = —r, u; =0, v, =

=9, ¢=9.

Using equations (3.13) and (3.14), it is easy to indicate the shape of the curve des-
cribed by the contact point on the fixed sphere ([10], p.178) between the parallels = = ¢,
and £ = e3. We can pursue the analogy between these problems deeper (the problem of
body motion in the Lagrange case andin the case of the rolling “uniform sphere”). In parti-
cular, if in the second problem with ¢ = 0 we have u;y" = 0, vy’ = 0, ny = 0,and uyy 5+ 0,
we get the well-known particular solution, the detailed description of which presents no
complications ([10], p. 181).

Next, we shall consider the question of stability, for the case of surfaces in contact on
their convex sides, of the particular solution

u'=0, ©n'=0 n=n, siny=0 cosy =—1
‘The stability will be investigated with reference to the variables
TA sin wvy, n, sin u,, cOS uy

assuming in the disturbed motion

ul-_—_g, sin u1v1'=fl' n=n°+c’ Sinu1=ﬁ, cos u1=—1$'6
Note first that in this problem we have the first integrals
R, \2
(MR? 4 A) (R—i}}——l) (134 sin®uav,%) + An?— 2Mg (R + Ry) cos uy = 2k

R
(MR? + A) —R;;{——‘ (sin u,py) sin u, — An €os up = %

sin 24y - cos 2u; = 1, n = ny
From the above it is easy to obtain the first integrals V,, V,, V, and V, also for the

equations of the disturbed motion.

Now, to determine the sufficient conditions for stability we construct, by the method
of Chetaev, Liapunov’s function in the form of integral relations [11]

V =V, + 2V, — [Mg (R + R,) + AnA1 Vs + pV g —

R -4 Ry \2 R -+ Ry \2
_Z(Ano+Al)V‘=(MRZ+A) (——;——L) £2 - (MR2+A)( 9 1) 0+
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+ o+ ) TEE s g R 4 R + Anl] B+ () D

—20A8L — [Mg (R + Rl) <+ Ang) &2 (4% = (MR? + A4) (4 + p))
The fanction will be positive - definite if

A’ng? — 4 (MR* + A) Mg (R + R) >0

which for R, = 0 becomes Maievski’s condition.

In conclusion, we note that for the case of “uniform sphere® motion on a fixed sphere
under the action of a “central force” with centers O, and O, the variables s, v, 0, r and n
are obtained in the same manner as in section 2, and variables u, and v, as in section 3,
i.e., the problem is fully solved by quadratures.

4. Next we shall investigate the problem of the motion of a body of revolution on a
sphere in the case when the body rests on the sphere with its plane -bounded end.

Assuming first that the base - surface is any convex surface, we shall derive the equa-
tions of motion of this body. The equation of the surface in the system Oz,z,z4 has the
form (the coordinate of the point of intersection of the axis of symmetry of the body Ox,
with the plane relative to the same axis will be denoted by d)

xy =ucosv, zz=usinv, zz=d (4.1)

We therefore find

n=1 Gy=1ut b;=0 by=0
hy=0, UL=0, Ip=1 (4.2)
P=uw4d, E=u, n=0 s=d
The expression for the kinetic energy is
= (4 4- Md® 0% + (4 + Mu® + Md?» ¥ + (C + Mu?) n® — 2Mduon (4.3)

Now, using (1.4) and (4.2), we derive the required equations of motion (a rotor is
added to the body)

d 49 a0 .38 .

ar aa"“an (n+v)-ﬁ+Mu21v=P1—-xt

d 98 a8 40 .

ai 6‘r+(n+v) 60 G—a;—Mu‘m = Py + %0 (4.4)
d 90 a8

2B B % Ma o+ wt) — Muni =P,

Next we shall return to the original problem, i.e., assume that the base -surface is a
sphere, which is given by equations (2.6) in the system Olz}z;x; and for which equations
(2.7) hold. The axis Ox, is here taken in the direction of the sphere, therefore we have
e; = — e}. We shall now obtain the necessary kinematic relations. The relations (1.5)
are here

Ry = —u'sin® 4 wwcos®, R,sinuw = u cos® + uv sin® (4.5)

The projections of the body angular velocity on the axes of the moving datum are
I T gy (4.6)

o=g v TSR Y n=— v —cosuy— X

Let us also consider some details. First, we shall obtain the expressions for the
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projections of the body angular velocity and the projections of the velocity of the center
of inertia of the body on axes Oz z4xg
p=0cosv—18iny, ¢g=0sinv+ TCOSV, T =R
k = usin vn — d (0 sin v - T cos v)
l=d(gcosv— tsinv) —ucosvn, m=ul
Second, describing expressions (1.9) by neans of (2.6) and (4.1) and comparing them
with the corresponding expressions on p. 45 [12], we find the values of Euler’s angles

between axes Oz;z4zy und 0,21z}
=0—u, $=—Yll4v, ¢=010-—v—-1> (4.7)

Finally, we shall indicate the form of the forcing functions in some interesting cases.
The gravity forcing function (the axis Oz} is taken vertically upwards), according to
(1.10), (4.2) and (2.7) is here

U= — Mg [(R, + d) cos u; — usin u, sin 4] (4.8)
and thus, using (1.7), we find
P, = Mgd sin u; cos &, Py = — Mgusin u,; cos ¥
= Mgd sin u, sin & + Mgu cos
Also, the forcing function of *central forces” with centers O, and (), as shown in [2], is a
fanction of only one coordinate u.

We shall now proceed directly to the integration of the system of equations (4.4), (4.5)
and (4.6) with the condition that the foreing function of the given forces depends only on
one coordinate u, and thatd = 0. The task of determining the quantities u, v, ¢, 7 andn
reduces here to the integration of two first-order linear equations with two functions o and
n independent of u (C = Mk?)

do C—A n a %
wTTA R Tw T

_1_ JEa 2dn 2 _
1‘)1v ( A'u) +ztn—u 11 =0

which are obtained from the first and third equations (4.4) (they were divided by u ).

Changing the variables to

C ! PR A
= VK F+ u? u2<—T-> .y oo, z=n Vi + &2 ( ) (4.9)
these equations become

ﬁli I b ,‘[: y
de R, TR, C=A de T R
It follows that
1{1/

y= Clex/Rl 4 Cype © Ry , z s Oyl Ry e I L
—A 2 C = ;1
Using equations (4.9) and denotmg by ug, G4, ny, and aq the corresponding quantities
at the initial instant of time, the solution becomes:

U0 = (UG + Neosh (4 — ag) =+ (ng VA% - tgfm - rag) sinh (@ — %) — F

nVEF u®m —= (o, -0 ninh(a — ag) -+ (ny V2T ughn + rag) cosh (@ — agy — ra
(ajjﬂ.l/() o ]/k’+ ,«:;]21‘ , m:“//_,:;’i)

R,
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Now, using the integral of kinetic energies, we get the relations (f, (u) and f, (u) are
known functions of the coordinate u )

du\? dv\2 . . g dv
(S () —Re@+ ™ = hw, wg=Ruo=f
on the basis of which the problem of determining the variables u and v, as functions of
time, is reduced to a quadrature. Thus, the question of determining the quantities u, v,

o, r and n is resolved.

The author thanks V.V. Rumiantsev for his assistance.
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